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Abstract—This paper discusses the need for individualizing
safety systems and proposes an approach including the Real-
Time estimation of the distribution of brake response times for
an individual driver. In order to improve the safety, the accident
warning system should send “tailored” responses to the driver.
This method could be the first step to show that safety appli-
cations of intelligent transportation systems would potentially
benefit from customizing to individual drivers’ characteristics
using vehicular ad hoc networks. Our simulation results show
that, as one of the imminent and preliminary outcomes of the
new improved system, the number of false alarms will be reduced
by more than 40%.

I. INTRODUCTION

Despite the increases in safety introduced into the auto-

mobile, at latest count (2013) the number of deaths is over

30,000, the number of injuries is over two million, and the

number of crashes is over ten million [1]. Some of these

accidents could have been prevented or reduced in severity if

the drivers involved had been warned in time to slow down to

avoid the accident. To address this problem, accident warning

systems hold great promise. The true potential of the various

classes of warning systems to reduce crashes is seriously

compromised by three interrelated factors. First, the algorithms

used to trigger a warning are largely ineffective when they

are not adapted to the individual driver and vehicles involved

directly in a crash. Second, warning algorithms have relied for

the most part on the behavior of threat vehicles immediately

ahead and to the side. Third, the driver often fails to trust

the warning even when it is issued in time to avoid a crash.

Radical improvement in the effectiveness of accident warning

systems are now possible due to the progress that is being

made in vehicular ad hoc networks (VANET). Vehicular ad hoc

networks potentially allow all vehicles to communicate with

each other (V2V or vehicle to vehicle communication) and

with technologies embedded in the infrastructure that transmit

crash relevant information (V2I or vehicle to infrastructure

communication). The effectiveness of warnings depends on

how much time the driver needs to react. Therefore, to be

as effective as possible, accident warning systems should

be tailored to the specific characteristics of the driver. An

important aspect of the specific characteristics of the driver

is the distribution of brake response times (BRT) for each

particular driver. The BRT is the time elapsed between a

stimulus such as a lead car braking or traffic signal changing

color and a braking response by the driver. Since existing

accident warning algorithms don’t use the BRT distribution of

individuals, drivers with different BRT in the same scenario

receive the same warnings. Clearly, this approach isn’t optimal

for design of safety systems. The most important contributions

of this paper are:

1) Proposing a method for Real-Time estimation of the dis-

tribution of brake response times for an individual driver

using data from a VANET system which has information

about the positions, velocities, and accelerations of cars

on the roads, road configurations, and the status and

position of traffic signals.

2) Using the estimated distribution to customize warning

algorithms to an individual driver’s characteristics.

The paper is organized as follows. In section II we review

the relevant literature formally defining the BRT and related

quantities, discussing factors that affect drivers’ BRTs, and

outlining several methods that have been proposed to estimate

a driver’s BRT. Section III and IV outline methods that can be

used to estimate BRTs and what the distribution of a driver’s

BRTs would be if he or she did not intentionally delay braking,

respectively.

II. RELATED WORK

A. Basic Ideas: Perception-Reaction Times and Brake Re-
sponse Times

The time required to respond to a stimulus can be divided

into several distinct phases. One such division is given by

Koppa [2]. He defined the perception-reaction time or brake

reaction time as the time required to perceive and initiate a

reaction to the stimulus. In this paper we define the potential

brake response time (PBRT) as the time that a driver could

have braked in if he or she did not choose to delay braking,

which is the relevant quantity for the purposes of an accident

warning system. We will use the term “brake response time”

(BRT) to refer to the observed quantity, the time elapsed

between a stimulus such as a traffic signal color change

and when the driver applies pressure to the brake pedal.
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Fig. 1: An illustration of the potential brake response time and

brake response time.

These definitions are illustrated in Fig. 1. The estimation of

BRT and PBRT both present technical difficulties. We review

methods that have been proposed to estimate these quantities

by previous researchers in the next two subsections. Virtually

every study to examine reaction times has found that the

population distribution of reaction times is skewed right and

several have shown that it is well approximated by a lognormal

distribution [2], [3], [4]. We will make use of this fact later

in our data analysis. The main ideas we build on in this

paper were proposed by Zhang and Bham [4]. Their method

is based on intuitive reasoning about the relationships between

the distances, speeds, and accelerations of two cars when the

following car reacts to an action taken by the lead car. The

starting point in their algorithm is to identify two cars which go

for a period of at least 4 seconds in which they are separated by

less than or equal to 250 feet and their speeds are within 5 ft/s,

or 1.52 m/s. These cars are said to be in a steady state. They

then observe a time A when the the distance between the cars

decreases or increases while the follower has an acceleration

rate of ≤ 0.5ft/s2. This change in distance between the cars is

caused by acceleration or deceleration of the leader. Next they

find the time B when the follower decelerates or accelerates

at a rate > 0.5ft/s2. The difference between times A and B

is then an estimate of the follower’s BRT. The advantages of

this method are that it is intuitively reasonable, relatively easy

to implement, and it yields reasonable reaction time estimates.

However, the requirement that the cars be in steady state is

restrictive. To obtain more information about drivers’ reaction

times, it would be helpful to extend this approach to estimate

reaction times in other situations than the steady state.

Another method for BRT estimation was proposed by Ma

and Andréasson and is based on techniques designed to find

the lag between two linearly related time series [5]. The basic

idea of the method is to examine the covariance between

the time series in the frequency domain, as measured by the

coherency. However, this method does not allow us to estimate

separate BRTs to separate events in a natural way.

A third approach was taken by Ahmed, who specified a

reaction time distribution as part of a larger model of car-

following behavior, and estimated all parameters of this model

jointly through maximum likelihood techniques [6]. How-

ever, the maximum likelihood estimates had to be obtained

numerically, which is computationally intensive due to the

complexity of the model. Therefore, this method would not be

practical to implement in an accident warning system where

the BRT distribution must be obtained with limited computing

resources. Furthermore, one of the desired requirements for the

warning systems is to use the individual perception reaction

time data online. In other words, the model needs to become

more accurate as more information becomes available from

VANET system. However, based on most of the current

methods we cannot update the algorithm in Real-Time. Three

previous studies have addressed the problem of estimating the

distribution of “true” reaction times based on observed brake

response times. All of these studies examined this problem

in the context of traffic signals, and focused on estimation of

population distributions, rather than distributions of response

times for a particular individual. Goh and Wong take a more

sophisticated approach [3]. They define a transitional zone

(TZ) based on the time headway between the driver and the

traffic signal at the time that it changes to yellow. This TZ is

“an empirically calibrated range of time headways suitable for

identifying drivers with realistic stop-or-cross decisions” [3].

Essentially, to estimate response times they limit the sample

to those cars with a time headway of ≤ 4 seconds. Nearly

all cars that chose not to stop at the light were within the

4-second threshold; thus, this threshold includes cars with a

“real” choice between stopping and continuing on. However,

by restricting the sample to those cars within the TZ, they lose

the information contained in those other data points. This is a

particularly critical problem in our application, where we wish

to learn about response times for a particular driver. We may

not have the chance to observe response times very frequently

for a single driver; it would therefore be helpful to be able to

use all observed data points rather than just those with a time

headway of 4 seconds or less.

III. PROPOSED METHOD FOR BRAKE RESPONSE TIME

ESTIMATION

For the purposes of the accident warning system, we wish to

learn about the distribution of response times for an individual

when the car in front of them brakes. As discussed in section

II, Zhang and Bham have proposed an effective method for

estimating BRT when the cars are in steady state. However,

this situation may be relatively rare in real-life driving situ-

ations, so that we may not make many observations of the

BRT for an individual driver under this setting. Therefore, in

practice it could be difficult to learn about the distribution

of response times using only the method proposed by Zhang

and Bham. Our proposed approach is to establish relationships

between the distributions of reaction times under different

circumstances. This will allow us to use measures of a driver’s

response times under a variety of circumstances to estimate

the distribution of an individual’s response times when the car

in front of them brakes. We will attempt to measure brake

response times in three settings: 1. The cars are in steady

state and the leader brakes, 2. The cars are not in steady state,

the follower is driving faster than the leader, and the leader

brakes, 3. The car approaches a traffic signal which changes

from green to yellow. In this section we discuss specific ideas



for reaction time estimation in each of these settings. For now

we concentrate on methods to obtain a point estimate for a

driver’s BRT to a particular event. Methods to combine these

point estimates to estimate the distribution of PBRTs will be

discussed in the next section. Although it is not mentioned in

any of the algorithms below, we suggest that response times

should only be recorded if the driver is travelling faster than

some cutoff speed such as 20 miles per hour.

A. Steady State, Leader Brakes

In this case we use the algorithm developed by Zhang and

Bham: 1. Identify when a pair of cars is in steady state for

4 seconds. First, they need to be separated by ≤ 250 ft.

Second, the speed and the acceleration of leader and follower

are equalized (speeds must be within ±5ft/s = 1.52m/s). It

is not clear in the text whether specific limits are placed

on acceleration, but it seems clear that if the distance and

speed conditions are satisfied for 4 or more seconds, the cars’

accelerations must be approximately equal. However, there

does seem to be a limit on the follower’s acceleration of

0.5ft/s2, from the second step below. 2. Observe a time A

when the the distance between the cars starts to decrease

while the follower has an acceleration rate of ≤ 0.5ft/s2. This

change in distance between the cars is caused by acceleration

or deceleration of the leader, 3. Observe the time B when the

follower decelerates at a rate > 0.5ft/s2.

Zhang and Bham do not specify how they determined when

the distance between the cars had started to decrease for

step 2 in this algorithm. Several methods are possible. One

simple idea is to determine at each time point whether the

distance between the cars is less than it was at the previous

measurement. If this is sustained for a sufficient length of time

(such as a quarter-second), the starting point A is the time at

which the distance first started decreasing. If limitations of

the measurement instrumentation mean that we may observe

an increase or no change in the distances between the cars

for one time point when they are actually decreasing, this

approach could be replaced by regressing distance on time over

a quarter-second period to determine if they have a negative

association on average over that time.

B. Not In Steady State, Leader Brakes

In theory, it seems likely that a similar technique to the

above can be used when the drivers are not yet in steady state

and the lead car brakes. Note that we might only expect to

observe a response in this situation if the follower is travelling

at a higher speed than the leader. Also, the follower and leader

should be near enough to each other that the follower will

need to respond to the leader’s braking action. For example,

we could measure response times only if the time headway

between the leader and the follower is less than 10 seconds at

the time that the leader brakes. The key problems are selecting

what measures to use in determining that the leader has braked

and that the follower has responded. For deciding whether the

leader has braked, it may be easiest to make use of the vector

of accelerations of the lead car, and use a threshold value to

decide when the leader has braked. We could simply use the

value −0.5ft/s2 which was used above to detect when the

following car reacted in the steady state setting. To determine

when the follower has responded, we would recommend first

finding when a response has occurred in driving simulation

trials by manually looking at the speed and acceleration

profiles. This should allow you to select what variables to use

to measure the response. One possibility that seems reasonable

is a reduction in the acceleration of the follower. Once this or

some other similar quantity is determined to be the appropriate

variable to use to detect the follower’s response, we will again

need to choose what cutoff value for that variable indicates that

the response has occurred. For example, we would need the

cutoff value c such that when the reduction in acceleration is

less than c, we say that the follower has responded. To find

the value c we could do a grid search, choosing N candidate

values c1, . . . , cN and running the classification code for each

value ci. For values of ci which are too close to 0, the threshold

will be exceeded easily and the algorithm will say the response

time was shorter than the manually determined value. For

values of ci which are too far from 0, the threshold will be

exceeded infrequently, and some of the manually determined

responses will be missed. The objective is to select a value

ci such that the results of the classification algorithm best

match the manual classification results. This could be done

informally, or formally by choosing c to minimize a function

such as the sum of squared differences between the manually

determined response time and the algorithmically determined

response time.

C. Traffic Signal Changes from Green to Yellow

There are several factors to consider when estimating a

driver’s brake response time to a traffic signal change. First, we

should only expect the driver to respond to the signal change

if they are within a reasonable distance of the signal. For that

reason, we suggest a cutoff of 10 seconds in the time headway

from the driver to the signal at the time it changes. Second,

we should not record a response time if there is an intervening

car between the driver and the traffic signal that also responds

to the signal change. Finally, we should not record a response

time if the driver turns at the intersection with the signal. This

would not be an accurate measure of the driver’s response time

since they would likely have been prepared to stop anyways.

We propose the following algorithm to estimate response

times to traffic signal changes: 1. Log the time when the

next traffic signal in front of the driver changes from green

to yellow, 2. If the time headway between the driver and

the traffic signal at the time of the signal change is large

(e.g., over 10 seconds), stop looking for a reaction time, 3.

If the leading car is also before the light, check to see if it

decelerates. If it does, stop looking for a reaction time, 4.

Check to see if the car decelerates. The difference between the

time when the car decelerates and when the signal changed is

the response time, 5. Follow up to see if the car turns at the

intersection. If it does, ignore the measured reaction time. In

order to be successful in tuning ITS algorithms to individual



drivers, we will need a model which provides us with an

estimate of the average driver’s brake reaction time as well

as the individual driver’s response time. The mix of drivers

on the road is constantly changing, with new drivers joining

and other, usually older, drivers leaving. Thus when there is

no information on an individual, the average response times

can be used. As more information about an individual driver’s

response times becomes available, the system can switch from

the general estimate of brake response time to the individual

driver’s estimated brake response time.

IV. ESTIMATING THE DISTRIBUTION OF POTENTIAL

BRAKE RESPONSE TIMES

A. General Discussion

In this section we discuss the construction of a statistical

model for the distribution of brake response times, and how

this model can be used to estimate the distribution of potential

brake response times for a particular individual. We adopt

a lognormal model for brake reaction times, modelling the

logarithm of the observed BRT as normally distributed condi-

tional on the time headway. This lognormal model also has the

advantage of automatically correcting for some differences in

the variance of the BRT distribution at different time headways

and across individuals. [3] shows that as the time headway

increases, the mean BRT and the variance of the BRTs

both increase. Similarly, it seems likely that some individuals

have lower or higher mean reaction times than other drivers,

and that the variance in the BRT distribution varies across

individuals as well. Specifically, it is likely that individuals

with a low mean reaction time also have a low variance in

their reaction times, whereas individuals with a high mean

reaction time also have a high variance in their reaction times.

These differences in the variance of brake reaction times will

be approximately corrected by modelling the logarithm of

the BRT. It also seems likely that the mean and variance of

the brake response time distribution depend on several other

variables. An important factor that will be accounted for in

our model is the stimulus type (e.g. traffic signal vs. lead car

decelerates). Reaction times also depend on a large number

of other factors such as weather conditions and demographic

characteristics of the driver. However, these variables will not

generally be available to the accident warning system, so their

effects will be absorbed into the error term of our model.

B. The Model

Using just the time headway as an explanatory variable, the

general ideas above can be formalized in the following model:

yd ∼ N(Xβ +Xγd, σ
2I)

γd ∼ N(0,Σγ) (1)

In this model, d indexes the driver. yd is a vector of the

logarithms of observed reaction times for a particular driver.

X is a matrix of covariates, detailed further below. β is a fixed

vector of unknown coefficients. σ2 is an unknown scalar. γd is

a random vector of unknown coefficients. Σγ is an unknown

matrix. The basic idea of this model is that, conditional on

the time headway, the distribution of BRTs for an individual

driver has a mean which is given by an overall population

mean, Xβ, plus an offset due to the particular characteristics

of that driver, Xγd. This is illustrated in Fig. 2. It is assumed

that the parameters γd determining the individual’s offset to

the overall mean follow a multivariate Normal distribution in

the population. This is a linear mixed effects model [7]. A key

assumption made in this model specification is that after the

log transformation, the covariance matrix Cov[yd] has the sim-

ple form σ2I . This assumption could fail to hold in a number

of ways, but it makes the calculations much easier. Since the

logarithm is a monotonically increasing function, it follows

that the logarithm of the BRT is also an increasing function

of time headway. For flexibility, we allow the possibility that

the log BRTs are a quadratic function of time headway. We

also allow for the possibility that the relationship between

time headway and BRT is slightly different for each of the

different stimulus types. For instance, it could be that drivers

have a faster BRT at low time headways and the average BRT

increases more rapidly as a function of time headway when

the stimulus is a lead car braking than when it is a traffic

signal changing to yellow. These considerations lead to the

following possible form of the mean log-BRT as a function of

time headway:

E[ydsi] =

βs,0+βs,1tdsi+βs,2t
2
dsi+ γd,s,0+ γd,s,1tdsi+ γd,s,2t

2
dsi (2)

In equation (2), d indexes the driver, s indexes the stimulus

type, and i indexes the observation (so if we have 5 different

BRT observations for a particular driver and stimulus type, i
will vary from 1 to 5). As before, ydsi is the log brake reaction

time, and tdsi is the time headway at the time of the stimulus.

The subscript s on the β and γ terms indicate that the values

of those coefficients depend upon the stimulus type s. To make

this concrete, if this mean function is adopted and there are

S = 3 different stimulus types under consideration with nds

observations for driver d under stimulus type s, β and γd are

9× 1 vectors and the portion of the X matrix corresponding

to observations for driver d will be of the following form:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 td11 t2d11 0 0 0 0 0 0
1 td12 t2d12 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

1 td1nd1
t2d1nd1

0 0 0 0 0 0
0 0 0 1 td21 t2d21 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 1 td2nd2
t2d2nd2

0 0 0
0 0 0 0 0 0 1 td31 t2d31
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 1 td3nd3
t2d3nd3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 2: An illustration of the model based on a simulated data

set. The plot shows simulated data for just one stimulus type.

The black curve represents the population-average relationship

between time headway and brake reaction time, Xβ. The red

curve represents the relationship between time headway and

brake reaction time for one individual, X(β + γ). The red

point is an observation for that driver.

C. Training the Model: A Fit Using Data from Driving Sim-
ulations

For training the model, we assume data are gathered for

D subjects in a driving simulation. If possible, we prefer to

gather data from real drivers on the road, but this is likely

to be too difficult to be feasible. This being the case, we

will take precautions to address concerns about using results

from a driving simulation to learn about response times for

drivers in real life driving situations. The subjects in the

study will be a representative sample of the overall population

of drivers who will be using the accident warning system.

Brake responses for each subject will be elicited at a variety

of levels of expectancy. To improve the statistical analysis,

responses will also be collected at a range of time headways

for each stimulus type. To separate the effects of expectancy

and any other variables that may be included in the model,

the combinations of these factors will be randomized (for

example, we will have some observations where the braking

stimulus was more and less surprising at different levels of

the time headway variable). For each driver, we have multiple

observations of reaction times for each stimulus type. These

data can be used to estimate the unknown quantities β, σ2,

and Σγ in this model using standard statistical techniques

implemented in the lmer function of the lme4 library in R.

We will use a subscript of (tr) to indicate quantities obtained

from this training data set; in particular, let X(tr) be the

covariate matrix obtained using data from this data set and

denote the estimates by β̂(tr), σ̂
2
(tr), and Σ̂γ(tr). β̂(tr) can be

written as β̂(tr) = (X ′
(tr)V

−1
(tr)X(tr))

−X ′
(tr)V

−1
(tr)y(tr), where

V(tr) = Cov(y(tr)) = X(tr)ΣγX
′
(tr)+σ2I and the superscript

′′−′′
denotes a generalized inverse. The estimates σ̂2

(tr) and

Σ̂γ(tr) can be found through numerical maximum likelihood

techniques. A study conducted by McGehee et al. has found

that the population average brake response time was about

0.3 seconds faster in driving simulations than it was in real

life driving studies [8]. This difference was found at time

headways of approximately 2 seconds. It is difficult to account

for this effect in a rigorous way, especially since this observed

difference may be due in part to methodological differences

between the simulator trials and the real car driving trials. One

ad hoc solution would be to increase the estimated value of

β̂0,(tr) by an amount such that the estimated population mean

reaction time at a time headway of 2 seconds increases by 0.3

seconds.

D. Real Time Estimation of the PBRT Distribution for One
Driver

We estimate the distribution of PBRTs for a particular driver

in two steps. First, we establish the relationship between

the covariates and BRT for that driver. Then we use this

relationship to estimate the distribution of PBRTs by using

values of the covariates at which the BRT does not include an

intentional delay to braking.

1) Estimating the Relationship Between Time Headway and
BRT for One Driver: As data are gathered in real time for an

individual driver d∗, our goal is to estimate the driver’s offset

γd∗ to the population-average regression coefficients β. This

is estimated by the Best Linear Unbiased Predictor (BLUP).

Intuitively, we might expect that if a particular driver has a

higher than average brake response time in one stimulus type,

they are likely to have a higher than average brake response

time in other stimulus types as well. Similarly, if they are

particularly sensitive to the time headway in one situation,

they are more likely to be sensitive to the time headway

with other stimulus types. This intuition suggests that the

covariance matrix Σγ will have non-zero off-diagonal entries;

that is, there is some degree of correlation among the γd
coefficients. Because of this correlation, observations from one

stimulus type can give us information about the coefficients

in the other stimulus types. For example, if we make some

observations of driver brake response times in the traffic light

setting which give positive estimates of the γd coefficients for

that stimulus, a positive correlation between the coefficients

might lead to positive estimates of the coefficients for other

stimuli as well. To reduce the computational complexity of

computing the BLUP, we assume that the information about

the unknowns β, σ2, and Σγ that is provided by the training

data set from the driving simulator is much greater than the

information provided by the data from this individual driver.

That is, the estimates β̂(tr), σ̂
2
(tr), and Σ̂γ(tr) obtained from

the training data set above are very similar to what we would

obtain if we estimated them using the combined training data

set with the observations for this driver. If this assumption

holds, we can approximate the BLUP using the estimates of

these quantities found with the training data set, which saves

the computational effort of re-fitting the model every time we



observe a new reaction time. Let Xd∗ be the covariate matrix

X as in the full model, but formed using only the data from

driver d∗. The BLUP of γ̂d∗ is

γ̂d∗ = Σ̂γ(tr)X
′
d∗ V̂ −1

d∗ (yd∗ −Xd∗ β̂(tr)), (3)

where V̂d∗ = Xd∗Σ̂γ(tr)X
′
d∗ + σ̂2

(tr)I. The covariance matrix

of the BLUP γ̃d∗ is given by

Cov(γ̃d∗) = ΣγX
′
d∗V −1

d∗ (Vd∗−Xd∗Cov(β̂(tr))X
′
d∗)V −1

d∗ Xd∗Σγ

(4)

To estimate the covariance matrix of γ̂d∗ , we plug our approxi-

mation to β̂, β̂(tr), and our estimates of σ2, Σγ , and Cov(β̂(tr))
into this formula. When no data have been gathered yet, the

best predictor is just the vector 0, with covariance matrix Σγ .

In this case, the estimated mean for the individual is equal to

the estimated mean for the population of all drivers.

2) Obtaining the Estimated PRBT Distribution: The final

step is to estimate the distribution of potential brake response

times for an individual driver, not including any delays. For

the suggested model form above using a quadratic function

of time headway, the intuitive idea is to pick a specific time

headway value t∗ at which the driver does not have enough

time to delay braking, and use that time headway value to

evaluate the mean function. Based on the plots in [3], it appears

that t∗ = 1.5 might be an appropriate value. We can then

estimate the mean of the driver’s log-RTs by plugging t∗ = 1.5
into the estimated mean function: μ̂ = β̂0 + γ̂d∗,0 + t∗(β̂1 +
γ̂d∗,1)+(t∗)2(β̂2+γ̂d∗,2). This provides an estimated mean for

the log-reaction time. There are several options for estimating

the variance of the log-PBRT distribution. One simple idea

would be to use the estimate σ̂2
(tr) of the quantity σ2 in the

model statement 1. However, this does not take into account

the uncertainty in our estimate μ̂. This uncertainty is captured

by the prediction error, (β̂(tr) + γ̂d∗) − (β + γd∗). It can be

shown that Cov((β̂(tr) + γ̂d∗) − (β + γd∗)) = Cov(β̂(tr)) +

Cov(γ̂d∗ − γd∗)− Cov(β̂(tr), γ
′
d∗)− Cov(γd∗ , β̂(tr)), where

Cov(γ̂d∗ − γd∗) = Σγ − Cov(γ̂d∗) (5)

Cov(γ̂d∗) =

ΣγX
′
d∗(V −1

d∗ − V −1
d∗ Xd∗Cov(β̂(tr))X

′
d∗V −1

d∗ )Xd∗Σγ (6)

Cov(β̂(tr), γ
′
d∗) = Cov(β̂(tr))X

′
d∗V −1

d∗ Xd∗Σγ (7)

This covariance can be estimated by plugging in estimates of

the unknown quantities Vd∗ , Cov(β̂(tr)), and Σγ . An estimate

of the variance of the distribution of log-PBRTs which takes

into account our uncertainty about the value of the mean is

then[
1 t∗ t∗2

]
Ĉov((β̂(tr) + γ̂d∗)− (β + γd∗))

[
1 t∗ t∗2

]′
+ σ̂2

(tr) (8)

When we do not yet have any data, the adjusted variance

estimate is [
1 t∗ t∗2

]
Σ̂γ

[
1 t∗ t∗2

]′
+ σ̂2

(tr). (9)
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Fig. 3: Estimates of the distribution of PBRTs for an individual

obtained in a simulation. The black curve represents the

individual’s “true” response time distribution. The blue curve

is the estimated distribution when the variance is taken to

be σ̂2. The red curve is the estimated distribution when the

variance estimate includes a term for uncertainty in β̂ and γ̂d∗ .

The vertical lines are at the 10th and 90th percentiles.

Fig. 3 shows the resulting distribution estimates obtained in

a simulation when these variance estimates are used as the

parameters of the distribution of PBRTs. From this plot we

can see that the estimates taking into account uncertainty in

the coefficient estimates are more conservative. On the scale

of these simulation results, the difference in the percentiles

obtained from these estimates is just a fraction of a second,

but the difference could be more significant with real data.

We will use the more conservative value for the estimated

variance since it more accurately reflects what we know about

the distribution of response times based on the available data.

We note that computation of the estimated PBRT distribution

requires only the operations of matrix inversion and matrix

multiplication. The matrix which must be inverted is V̂d∗ ,

which has dimension nd∗ , the number of observations for

driver d∗. The inversion operation has computational com-

plexity O(n3
d∗). All of the matrix multiplication operations

are between matrices of dimension 9 × 1, 9 × 9, 9 × nd∗ ,

nd∗ × 1, or nd∗ × 1. Because multiplying an n×m matrix by

an m × k matrix has complexity O(nmk), this implies that

the complexity of the “worst” matrix multiplication operation

is O(9n2
d∗) (for the product X ′

d∗ V̂
−1
d∗ ). Therefore the whole

computation has complexity O(n3
d∗) when nd∗ > 9.

E. Estimated PBRT Distribution vs Population Distribution

In this section, our goal is to relate the estimated individual

distribution to the distribution of BRTs for the population in

order to show how accident warning algorithms benefit from

taking the estimated distribution into account. As discussed

earlier, researchers have consistently found that reaction times

are skewed right and are approximated well by a lognormal



TABLE I: Collision scenarios between V0 and V1.

Collision 1 Collision 2
Before V0 stops After V0 stops

Before V1 Reacts Before V1 Reacts
Collision 3 Collision 4

Before V0 stops After V0 stops
After V1 Reacts After V1 Reacts

Fig. 4: An example of collision scenarios between vehicles V0

and V1 in a very dense traffic. V1 follows V0 in a chain of

vehicles. X , V and b represent inter-vehicle spacing, velocity,

and deceleration rate respectively.

distribution. It is reasonable to assume that brake reaction

times are skewed right within individuals as well. As we

mentioned, [2] established that the distribution of BRTs of

drivers reacting to surprise events follows a log-normal curve

with parameters μ = 0.17 and σ = 0.44. We try to minimize

the frequency of false alarms that the system gives subject to

this distribution. If the system detects that the driver has less

than his or her BRT to react to an obstacle, it should give the

driver a warning. We can only state the probability that any

BRT is above or below a certain value. Thus, the constraint

states that we must calculate some threshold Tt above which

there is only small chance that a BRT will be , and send a

warning whenever a driver has less than this amount of time

to react. Therefore, we can calculate the threshold to send the

warnings using the distribution for the entire population:

P (Y ≤ Tt) = Φ

(
ln(Tt)− 0.17

0.44

)
= 1− prob. of accident

(10)

Also, we can calculate warning threshold using the distribution

for an individual driver as well. Probability of accidents

can be calculated using Table I and Fig. 4 which illustrates

an example of collision scenarios between any two adjacent

vehicles on highways. Now that we have established the

thresholds for sending accident warnings, we can calculate

the false alarm rates that will result from using the different

systems. A false alarm occurs whenever a warning is sent, but

it is not needed. To best explain this problem, let us consider

the scenario that a vehicle is following another vehicle on a

Fig. 5: This figure shows the false alarm rate (y axis) versus

the probability of accident (x axis), the percentage of possible

accidents that the system fails to give warning about, us-

ing population and individual PBRT distributions. Population

distribution = lnN(0.17, 0.442), based on results from [2].

Different variance of the estimation error is assumed for the

individual distributions.

one-lane roadway when the lead vehicle suddenly begins to

decelerate to avoid an unexpected obstacle. Suppose that the

system has calculated that the following driver has t seconds

to react, and that t is less than Tt, therefore a warning has

been sent. Then, the false alarm rate is the probability that the

driver’s reaction time, Y , will be less than t. It is clear from

Fig. 5 that when we use the population brake reaction the

false alarm rate is higher by almost a factor of two than when

we use the individual driver’s brake reaction time. Therefore,

safety applications could potentially take full advantage of

being customized to an individual’s characteristics.
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